Palladium Supported on Titanium Carbide: A Highly Efficient, Durable, and Recyclable Bifunctional Catalyst for the Transformation of 4-Chlorophenol and 4-Nitrophenol
نویسندگان
چکیده
Developing highly efficient and recyclable catalysts for the transformation of toxic organic contaminates still remains a challenge. Herein, Titanium Carbide (Ti₃C₂) MXene modified by alkali treatment process was selected as a support (designated as alk-Ti₃C₂X₂, where X represents the surface terminations) for the synthesis of Pd/alk-Ti₃C₂X₂. Results show that the alkali treatment leads to the increase of surface area and surface oxygen-containing groups of Ti₃C₂X₂, thereby facilitating the dispersion and stabilization of Pd species on the surface of alk-Ti₃C₂X₂. The Pd/alk-Ti₃C₂X₂ catalyst shows excellent catalytic activity for the hydrodechlorination of 4-chlorophenol and the hydrogenation of 4-nitrophenol in aqueous solution at 25 °C and hydrogen balloon pressure. High initial reaction rates of 216.6 and 126.3 min-1· g pd - 1 are observed for the hydrodechlorination of 4-chlorophenol and hydrogenation of 4-nitrophenol, respectively. Most importantly, Pd/alk-Ti₃C₂X₂ exhibits excellent stability and recyclability in both reactions without any promoters. The superior property of Pd/alk-Ti₃C₂X₂ makes it as a potential material for practical applications.
منابع مشابه
Palladium Loaded on Magnetic Nanoparticles as Efficient and Recyclable Catalyst for the Suzuki- Miyaura Reaction
Palladium is the best metal catalyst for Suzuki cross coupling reaction for synthesize of unsymmetrical biaryl compounds. But its high cost limits its application in wide scale. Using of nanoscale particles as active catalytic cites is a good approach for reducing needed noble metal. By loading precious nanoparticles on magnetic nanocores as a support, recycling and reusing of catalyst will be ...
متن کاملPerformance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction
In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...
متن کاملManganese salophen complex supported on magnetic nanoparticles as an efficient, selective and recyclable catalyst for epoxidation of alkenes
A magnetically recoverable catalyst consisting of Mn (III) salophen complex was prepared. The synthesized catalyst was characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Fourier transform infrared (FT-IR). The immobilized catalyst was shown to be an ef...
متن کاملManganese salophen complex supported on magnetic nanoparticles as an efficient, selective and recyclable catalyst for epoxidation of alkenes
A magnetically recoverable catalyst consisting of Mn (III) salophen complex was prepared. The synthesized catalyst was characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Fourier transform infrared (FT-IR). The immobilized catalyst was shown to be an ef...
متن کاملMagnetic amine-functionalized graphene oxide as a novel and recyclable bifunctional nanocatalyst for solvent-free synthesis of pyrano[3,2-c]pyridine derivatives
The new magnetic amine-functionalized graphene oxide (Fe3O4-GO-NH2) nanocatalyst was prepared through the reaction of 3-aminopropyltriethoxysilane (APTES) with magnetic graphene oxide (Fe3O4-GO). It was characterized by XRD, TEM, SEM, FT-IR and EDX techniques. The intrinsic carboxylic acids on the edges of Fe3O4-GO alo...
متن کامل